Multivariate morphometric study of Apis florea in Thailand

Thadsanee Chaiyawong, ${ }^{1}$ Sureerat Deowanish, ${ }^{1}$ Siriwat Wongsiri,' H Allen Sylvester, ${ }^{2}$ * Thomas E Rinderer ${ }^{2}$ and Lilia De Guzman ${ }^{2}$
Center of Excellence in Entomology, Bee Biology, Biodiversity of Insects and Mites, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Phathumwan, Bangkok 10330, Thailand
${ }^{2}$ USDA, ARS, Honey-Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
Received 19 February 2004, accepted subject to revision 9 March 2004, accepted for publication 16 July 2004

Abstract

SUMMARY Morphometric analyses of Apis florea in Thailand were carried out in order to detect differences within this species. The nine body parts selected for analysis were: proboscis, antenna, forewing, hindwing, hind leg, the third and sixth sternites, and the third and fourth tergites. Twenty-two characters, consisting of widths, lengths or angles, were measured. Factor analysis sorted 14 characters of worker bees into four factors: (Factor 1) characters associated with size, hind leg and antenna; (Factor 2) length of wing venation and forewing; (Factor 3) number of hamuli and venation angle 37; and (Factor 4) venation angle 34. The results of factor and cluster analyses using the 22 characters revealed that the A. florea of Thailand are distributed as one group. Four characters (forewing radial cell length, metatarsus length, 3rd sternite length and antenna length) can be used to separate by Student-Newman-Keuls Statistics the A. florea of Samui and Pha-ngan Islands from the mainland.

Keywords: honey bees, Apis florea, morphometric analysis, Thailand

INTRODUCTION

Based on morphology, behaviour and geographic distribution, taxonomists have separated honey bees into nine species, five of which are found in Thailand. Apis florea, A. andreniformis, A. dorsata, and A. cerana are native species, whereas A. mellifera is introduced (Wongsiri, 1995). These bees are economically important in agriculture, medicine and the environment (Free, 1981). In addition, they are pollinators, especially A. florea which is an excellent pollinator of various economic crops and forest trees and has a wide foraging range (Wongsiri et al., 2000). Most research on honey bee variation has been conducted on A. mellifera using morphometric analysis. Morphometrics is the measurement and statistical analysis of morphological structures of organisms (Daly, 1985). Few data on the native species of Thailand have been reported, especially on the morphometrics of A. florea. Rinderer et al. (1995) reported a comparison of A. florea and A. andreniformis for 44 morphometric characteristics for colonies from south eastern Thailand. Makhmoor \& Ahmad (1998) reported studies of 16 morphological characters of 10 bees each of A. florea, A. mellifera, A. cerana and A. dorsata from the Jammu region of India. Narayanan et al. (1960) reported the tongue lengths and number of hamuli for 250 bees from five colonies at Pusa, India. Morphometric studies have been carried out on A. cerana in Thailand (Sylvester et al., 1998) that showed that A. cerana can be separated into four geographic groups. In the present study, morphometric analyses of A. florea in Thailand were carried out in order to determine whether differences could be detected within this species, allowing separation into geographic groups.

MATERIALS AND METHODS

Fifteen worker bees were collected from each of fifty Apis florea colonies from different locations to sample the range of ecological variation in Thailand (table 1, fig. 1). These bees were preserved in 70% ethanol until they were dissected. The nine body parts selected were: proboscis, antenna, forewing, hindwing, hind leg, third and sixth sternites, and the third and fourth tergites.

These parts were mounted on slides. A stereo microscope and the Dazzle Digital Video Creator and Digital Photo Marker program were used to take photos of all parts. Measurements of width, length or angle of 22 characters (Hepburn et al., 2001; Ruttner, 1988) were carried out using the Image-Pro Plus program and recorded into a computer. Data were analysed by using factor and cluster analyses and one-way ANOVA.

RESULTS

The first statistical procedure performed a factor analysis on the colony means by using 22 characters for all 750 worker bees collected from the mainland and Samui and Pha-ngan Islands of Thailand. The means for all 750 worker bees are presented in table 2. Fourteen characters that had a high factor loading (greater than 0.6) were selected for further analysis: 3rd tergite length, 4th tergite length, femur length, 6th sternite length, tibia length, metatarsus length, 3rd sternite length, radial cell length, forewing length, apical portion of radial cell length, antenna length, venation angle 37, number of hamuli and venation angle 34. The second factor analysis using the colony means for the selected 14 characters grouped them into four factors with eigen values greater than one as new variables: (Factor 1) the characters associated with size, hind leg and antenna; (Factor 2) length of wing venation and forewing; (Factor 3) number of hamuli and venation angle 37; and (Factor 4) venation angle 34.
These factor score values were used in a cluster analysis in an attempt to classify the population structure of A. florea by mainland region, islands, and north and south of latitude $12^{\circ} \mathrm{N}$ in Thailand (at the Isthmus of Kra, the zoogeographic divide between central and south Thailand). The dendrogram shows that these bees were clumped into one group (fig. 2); that is, there was no discernible population structure based on region.

One-way ANOVA and multiple comparisons with Student-New-man-Keuls were used to test the mean value of the morphological characters in each region. All F tests indicated significant differences among the geographic/climatic groups except the test

FIG. 1. Map of Thailand showing the sampling sites for Apis florea.

FIG. 2. Dendrogram showing the Apis florea samples classified by region.

TABLE 1. The locations of Apis florea sample collections.			
Codes	Localities	Regions	Coordinates
1	Dan Chang	Changwat Suphan Buri	$14^{\circ} 49{ }^{\prime} 00 \mathrm{~N} 99^{\circ} 42^{\prime} 00 \mathrm{E}$
5	Sam Roi Yot	Changwat Prachuap Khiri Khan	$12^{\circ} 15^{\prime} 00 \mathrm{~N} 99^{\circ} 52^{\prime} 60 \mathrm{E}$
8	Bang Saphan	Changwat Prachuap Khiri Khan	$11^{\circ} 11^{\prime} 60 \mathrm{~N} 99^{\circ} 31^{\prime} 00 \mathrm{E}$
9	Bang Saphan	Changwat Prachuap Khiri Khan	$11^{\circ} 11^{\prime} 60 \mathrm{~N} 99^{\circ} 31^{\prime} 00 \mathrm{E}$
10	Bang Saphan Noi	Changwat Prachuap Khiri Khan	$11^{\circ} 04^{\prime} 60 \mathrm{~N} 99^{\circ} 28{ }^{\prime} 60 \mathrm{E}$
11	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 25^{\prime} 60 \mathrm{~N} 99^{\circ} 58^{\prime} 00 \mathrm{E}$
12	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 25^{\prime} 60 \mathrm{~N} 99^{\circ} 588^{\prime} 00 \mathrm{E}$
13	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 25^{\prime} 60 \mathrm{~N} 99^{\circ} 588^{\prime} 00 \mathrm{E}$
14	Chumphon	Changwat Chumphon	$10^{\circ} 30^{\prime} 00 \mathrm{~N} 99^{\circ} 10^{\prime} 00 \mathrm{E}$
15	Chumphon	Changwat Chumphon	$10^{\circ} 30^{\prime} 00 \mathrm{~N} 99^{\circ} 10^{\prime} 00 \mathrm{E}$
19	Phatthana Nikhom	Changwat Lop Buri	$14^{\circ} 50^{\prime} 12 \mathrm{~N} 100^{\circ} 59{ }^{\prime} 48 \mathrm{E}$
20	Phatthana Nikhom	Changwat Lop Buri	$14^{\circ} 50^{\prime} 12 \mathrm{~N} 100^{\circ} 59^{\prime} 48 \mathrm{E}$
21	Phatthana Nikhom	Changwat Lop Buri	$14^{\circ} 50^{\prime} 12 \mathrm{~N} 100^{\circ} 59^{\prime} 48 \mathrm{E}$
25	Phatthana Nikhom	Changwat Lop Buri	$14^{\circ} 50^{\prime} 12 \mathrm{~N} 100^{\circ} 59^{\prime} 48 \mathrm{E}$
26	Phatthana Nikhom	Changwat Lop Buri	$14^{\circ} 50^{\prime} 12 \mathrm{~N} 100^{\circ} 59^{\prime} 48 \mathrm{E}$
29	Chai Badan	Changwat Lop Buri	$15^{\circ} 10^{\prime} 23 \mathrm{~N} 101^{\circ} 05^{\prime} 49 \mathrm{E}$
36	Khon Buri	Changwat Nakhon Ratchasima	$14^{\circ} 31^{\prime} 00 \mathrm{~N} 102^{\circ} 15^{\prime} 00 \mathrm{E}$
37	Khon Buri	Changwat Nakhon Ratchasima	$14^{\circ} 31^{\prime} 00 \mathrm{~N} 102^{\circ} 15^{\prime} 00 \mathrm{E}$
41	Kaeng Krachan	Changwat Phetchaburi	$12^{\circ} 54^{\prime} 00 \mathrm{~N} 99^{\circ} 34^{\prime} 60 \mathrm{E}$
43	Muang Samut Songkhram	Changwat Samut Songkhram	$13^{\circ} 22^{\prime} 60 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
44	Muang Samut Songkhram	Changwat Samut Songkhram	$13^{\circ} 22^{\prime} 60 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
45	Bo Rai	Changwat Trat	$12^{\circ} 22^{\prime} 60 \mathrm{~N} 102^{\circ} 37^{\prime} 00 \mathrm{E}$
48	Noen Maprang	Changwat Phitsanulok	$16^{\circ} 34^{\prime} 00 \mathrm{~N} 100^{\circ} 37{ }^{\prime} 60 \mathrm{E}$
50	Chiang Dao	Changwat Chiang Mai	$19^{\circ} 22^{\prime} 00 \mathrm{~N} 98^{\circ} 58^{\prime} 00 \mathrm{E}$
51	Muang Uttaradit	Changwat Uttaradit	$17^{\circ} 37^{\prime} 52 \mathrm{~N} 100^{\circ} 06^{\prime} 03 \mathrm{E}$
56	Ko Phangan	Pha-ngan Island, Changwat Surat Thani	$09^{\circ} 43^{\prime} 00 \mathrm{~N} 100^{\circ} 00^{\prime} 00 \mathrm{E}$
57	Ko Phangan	Pha-ngan Island, Changwat Surat Thani	$09^{\circ} 43^{\prime} 00 \mathrm{~N} 100^{\circ} 00^{\prime} 00 \mathrm{E}$
58	Ko Phangan	Pha-ngan Island, Changwat Surat Thani	$09^{\circ} 43^{\prime} 00 \mathrm{~N} 100^{\circ} 00^{\prime} 00 \mathrm{E}$
59	Ko Phangan	Pha-ngan Island, Changwat Surat Thani	$09^{\circ} 43^{\prime} 00 \mathrm{~N} 100^{\circ} 00^{\prime} 00 \mathrm{E}$
63	Mae Rim	Changwat Chiang Mai	$18^{\circ} 54^{\prime} 44 \mathrm{~N} 98^{\circ} 56^{\prime} 23 \mathrm{E}$
67			$16^{\circ} 19^{\prime} 60 \mathrm{~N} 102^{\circ} 39{ }^{\prime} 00 \mathrm{E}$
72	Laem Sing	Changwat Chanthaburi	$12^{\circ} 28^{\prime} 60 \mathrm{~N} 102^{\circ} 04^{\prime} 00 \mathrm{E}$
76	Ban Tak	Changwat Tak	$17^{\circ} 02^{\prime} 26 \mathrm{~N} 99^{\circ} 03^{\prime} 47 \mathrm{E}$
82	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 33^{\prime} 00 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
83	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 33^{\prime} 00 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
87	Ko Samui	Samui Island, Changwat Surat Thani	$09^{\circ} 25^{\prime} 60 \mathrm{~N} 99^{\circ} 588^{\prime} 00 \mathrm{E}$
94	Chaiya	Changwat Surat Thani	$09^{\circ} 22^{\prime} 60 \mathrm{~N} 99^{\circ} 13^{\prime} 60 \mathrm{E}$
95	Chaiya	Changwat Surat Thani	$09^{\circ} 22^{\prime} 60 \mathrm{~N} 99^{\circ} 13^{\prime} 60 \mathrm{E}$
97	Muang Prachuap Khiri Khan	Changwat Prachuap Khiri Khan	$11^{\circ} 49^{\prime} 00 \mathrm{~N} 99^{\circ} 47^{\prime} 60 \mathrm{E}$
98	Muang Prachuap Khiri Khan	Changwat Prachuap Khiri Khan	$11^{\circ} 49^{\prime} 00 \mathrm{~N} 99^{\circ} 47{ }^{\prime} 60 \mathrm{E}$
102	Phu Khieo	Changwat Chaiyaphum	$16^{\circ} 22^{\prime} 00 \mathrm{~N} 102^{\circ} 07^{\prime} 60 \mathrm{E}$
109	Wanon Niwat	Changwat Sakon Nakhon	$17^{\circ} 37^{\prime} 60 \mathrm{~N} 103^{\circ} 46^{\prime} 00 \mathrm{E}$
116	Muang Samsip	Changwat Ubon Ratchathani	$15^{\circ} 31^{\prime} 00 \mathrm{~N} 104^{\circ} 43^{\prime} 60 \mathrm{E}$
118	Selaphum	Changwat Roi Et	$16^{\circ} 01^{\prime} 60 \mathrm{~N} 103^{\circ} 57^{\prime} 00 \mathrm{E}$
119	So Phisai	Changwat Nong Khai	$18^{\circ} 04^{\prime} 00 \mathrm{~N} 103^{\circ} 25^{\prime} 60 \mathrm{E}$
136	Wiset Chai Chan	Changwat Ang Thong	$14^{\circ} 34^{\prime} 60 \mathrm{~N} 100^{\circ} 20^{\prime} 60 \mathrm{E}$
137	Damnoen Saduak	Changwat Ratchaburi	$13^{\circ} 31{ }^{\prime} 00 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
138	Damnoen Saduak	Changwat Ratchaburi	$13^{\circ} 31{ }^{\circ} 00 \mathrm{~N} 99^{\circ} 55^{\prime} 60 \mathrm{E}$
139	Pathiu	Changwat Chumphon	$10^{\circ} 41^{\prime} 60 \mathrm{~N} 99^{\circ} 19^{\prime} 00 \mathrm{E}$
140	Phra Samut Chedi	Changwat Samut Prakan	$13^{\circ} 33^{\prime} 00 \mathrm{~N} 100^{\circ} 34^{\prime} 00 \mathrm{E}$

on number of hamuli. It was found that the characters associated with abdominal size (3rd tergite length, 4th tergite length, 3rd sternite length and 6th sternite length) were smaller in the sample bees from Samui and Pha-ngan Islands. In addition, the characters associated with the appendages of bees from both islands (radial cell length, apical portion of radial cell length, metatarsus length and antenna length) were smaller than the mainland samples. Moreover, the characters radial cell length, metatarsus length, 3rd sternite length and antenna length were able to separate A. florea of these islands from the mainland. In addition, the comparative result of the mean value of antenna length sepa-
rated samples from the east from the other regions. The comparative result of the mean value of metatarsus length separated samples from the central region from the other regions, but there were only a few samples from the east and north when compared to the other regions.

DISCUSSION

This morphometric study used 22 characters of A. florea distributed over different regions throughout the mainland and two of the islands of Thailand and found that the bees were not

TABLE 2. Means, standard deviations and coefficients of variation for $\mathbf{2 2}$ characters of $\mathbf{7 5 0}$ worker bees.

Character	Mean \pm s.d.	CV
Tongue length	3.333 ± 0.150	4.506
Labial palp length	1.058 ± 0.033	3.134
Forewing length	6.293 ± 0.139	2.207
-radial cell length	2.318 ± 0.056	2.397
-apical position of radial cell length	1.459 ± 0.045	3.090
-venation angle 34	19.175 ± 1.308	6.823
-venation angle 35	99.602 ± 3.658	3.672
-venation angle 37	27.861 ± 2.390	8.580
Hindwing-basal portion of radial vein length	1.070 ± 0.043	3.995
-vannal lobe length	1.195 ± 0.063	5.231
-number of hamuli	11.173 ± 1.028	9.200
Femur length	1.721 ± 0.046	2.698
Tibia length	2.183 ± 0.060	2.749
Metatarsus length	1.254 ± 0.040	3.210
3rd tergite length	1.365 ± 0.055	3.997
Dark band of 4th tergite length	0.534 ± 0.079	14.706
4th tergite length	1.333 ± 0.048	3.580
3rd sternite length	1.777 ± 0.056	3.167
Wax mirror of 3rd sternite length	0.755 ± 0.044	5.870
6th sternite length	1.450 ± 0.037	2.532
Flagellum length	1.774 ± 0.118	6.633
Antenna length	2.819 ± 0.087	3.101

different using factor and cluster analyses. However, A. florea from Samui and Pha-ngan Islands tended to separate from the mainland samples by Student-Newman-Keuls statistics.

Fifty colonies of A. florea were classified by cluster analysis. It was found that 48 colonies were separated into the first group. However, two colonies, from Prachuap Khiri Khan (\#97) and Samui Island (\#87), were separated into a second group. One-way ANOVA and multiple comparisons with Student-Newman-Keuls were used to test the mean value of the morphological characters in each region. It was found that characters associated with the size of the sample bees from the islands (3rd tergite length, 4th tergite length, 3rd sternite length and 6th sternite length) were smaller than the mainland samples. This is consistent with Bergmann's rule that geographic races of one species are larger in the north than in the south (Ruttner, 1988). In addition, the characters associated with appendages of the sample bees from the islands (radial cell length, apical portion of radial cell length, metatarsus length and antenna length) were smaller than the mainland samples. Moreover only four characters (radial cell length, metatarsus length, 3rd sternite length and antenna length) separated A. florea of Samui and Pha-ngan Islands from the mainland samples by Student-Newman-Keuls Statistics. One explanation is that the island bees were the original bees or were introduced from the mainland by humans many years ago with the sea providing a reproductive barrier. However, significant differences were found only for a few characters, suggesting the separation between A. florea of the island and mainland samples in this study was not enough to classify island samples as a separate group.
Based on antenna length, samples of A. florea from the east in Thailand could be separated from the other regions, and based on metatarsus length samples from the central region could be separated also. But the quantity of A. florea samples from the east and north regions were few when compared to the other sampled regions. Thus, more samples should be studied to find a clearer conclusion.

We conclude that A. florea in Thailand exhibits less division into distinguishable geographic groups than does A. cerana, in which Sylvester et al. (1998) were able to distinguish four groups.

Acknowledgements

This work was supported by the TRF/BIOTEC Special Program for Biodiversity Research and Training grant BRT T 144007, TRF for Senior Research Scholars (RTA 4580012) and by the graduate school fund of Chulalongkorn University. We wish to thank the Bee Biology Research Unit, Department of Biology and Department of Marine Science, Faculty of Science, Chulalongkorn University for facilities used throughout the study. This research was conducted in cooperation with the Louisiana Agricultural Experiment Station. Thanks are also extended to Prof. Dr Randall Hepburn, Assoc. Prof. Chariya Lekprayoon, Assoc. Prof. Seema Jayasvasti, Asst. Prof, Dr Kumthorn Thirakhupt, and Dr Wandee Wattanachaiyingcharoen.

REFERENCES

DALY, H V (1985) Insect morphometrics. Annual Review of Entomology 30: 415-438.
FREE, J B (1981) Biology and behaviour of the honeybee Apis florea, and possibilities for beekeeping. Bee World 62(2): 46-59.
HEPBURN, H R; RADLOFF, S E; VERMA, S; VERMA, L R (2001) Morphometric analysis of Apis cerana populations in the southern Himalayan region. Apidologie 32: 435-447.
MAKHMOOR, H D; AHMAD, H (1998) Biometric studies on four species of honey bees in Jammu region, India. Indian Bee Journal 60(3): 141-142.

NARAYANAN, E S; SHARMA, P L; PHADKE, K G (1960) Studies on biometry of the Indian bees II. tongue length, wing hooks, worker-brood-cell size and thickness of comb of Apis florea F. at Pusa (Bihar). Indian Bee Journal 22(10-12): 81-88.
RINDERER, T E; OLDROYD, B P; WONGSIRI, S; SYLVESTER, H A; DE GUZMAN, L I; STELZER, J A; RIGGIO, R M (1995) A morphological comparison of the dwarf honey bees of southeastern Thailand and Palawan, Philippines. Apidologie 26: 387-394.
RUTTNER, F (1988) Biogeography and taxonomy of honeybees. Springer Verlag; Berlin, Germany; 284 pp.

SYLVESTER, H A; LIMBIPICHAI, K; WONGSIRI, S; RINDERER, T E; MARDAN, M (1998) Morphometric studies of Apis cerana in Thailand and the Malaysian peninsula. Journal of Apicultural Research 37(3): 137-145.
WONGSIRI, S (1995) Queen production. In Kevan, P G (ed) The Asiatic hive bee: apiculture, biology, and role in sustainable development in tropical and subtropical Asia. Enviroquest, Ltd; Cambridge, Ontario, Canada; pp. 91-107.
WONGSIRI, S; CHANCHAO, C; DEOWANISH, S; AEMPRAPA, S; CHAIYAWONG, T; PETERSEN, S; LEEPITAKRAT, S (2000) Honey bee diversity and beekeeping in Thailand. Bee World 81(1): 20-29.

